TOOLS FOR BUSINESS VALUE CREATION SERIES

 $Z - test = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}}$

 $\left[\frac{Z\alpha/2\sigma}{ME}\right]^2 \qquad P_i = \frac{100(i-0.5)}{n}$

 $\sum_{i=1}^{n} \frac{X_{i}}{n}$

 $r = \frac{\sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2}}$

 $\sqrt{\sum_{i=1}^{n} \frac{(x_i - \hat{x})^2}{n-1}}$

 $\widehat{Y}_{t+1} = Y_t + \left(\frac{Y_t}{Y_{t-1}} - 1\right) \times Y_t$

$$S\widehat{y} = \sqrt{MSE} \sqrt{1 + \frac{1}{n} + \frac{(X_k - \overline{X})^2}{\Sigma (X_i - \overline{X})^2}}$$

Z calculated test score =
$$\frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} = \frac{0.46 - 0.50}{\sqrt{\frac{0.46(1-0.46)}{400}}} = -32$$

 $P_i = \frac{100(i-0.5)}{n}$

WHAT COUNTS? Business Analytics for Entrepreneurs

 $\frac{t+1-X_t}{X_t}$

James M. Wilson III, PHD

 $\binom{150}{66}0.4^{66}(0.6)^{150-66} + \binom{150}{65}0.4^{67}(0.6)^{150-67} + \dots + \binom{150}{150}0.4^{1}(0.6)^{150-150}$

What Counts

Business Analytics for Entrepreneurs

James M. Wilson III, PhD

What Counts: Business Analytics for Entrepreneurs by James M. Wilson III

Published by Penser Press 81 Prospect Street, Suite 47 Northampton, Massachusetts 01060

www.penserpress.com

© 2022 James M. Wilson III

All rights reserved. No portion of this book may be reproduced in any form without permission from the publisher, except as permitted by US copyright law. For permissions contact questions@penserpress.com.

For additional materials related to this text contact the author at questions@penserpress.com.

Design and typesetting by Greg Caulton

ISBN 978-1-7355406-2-7

I want to thank all of the students in my MBA classes at Bay Path University for providing the inspiration and many of the ideas for this text. Some students are "geniuses of misunderstanding" who can unearth any trace of ambiguity with a remarkable and surprising creativity. In an attempt to answer that challenge, my instruction and writing have become clearer.

Thank you for buying an authorized edition of this book and for complying with copyright laws by not reproducing, scanning, or distributing any part of it, in any form, without permission. By doing so you are supporting the writer to continue to produce works for every reader.

TABLE OF CONTENTS

Preface	іх

SECTION I

Analytics and Cognition

CHAPTER 1

An Overview of Analytics

Introduction	3
Data, Information, Knowledge, and Wisdom (DIKW)	4
Analytics Need Business Intelligence	6
Types of Analytics	7
Summary	10

CHAPTER 2

Organizational Intelligence and Learning

Introduction	11
Mental Models and Management	12
Exploration and Exploitation	13
Cognition and the Dominant Logic of the Firm	13
Definitions of Intelligence	15
Business Intelligence and Absorptive Capacity	15
Organizational Intelligence and Absorptive Capacity	17
Characteristics of Absorptive Capacity	19
Organizational Learning	22
Summary: The Need for Analytics to Support Intelligence and Learning	26

CHAPTER 3

Challenges to Organizational Intelligence

Introduction	27
Dominant Logic and Risk-Taking	28
Organizational Inertia	29
Modes of Thinking: System 1 and System 2	31
Bounded Rationality	33

1

Cognitive Biases and Heuristics	34
Tacit Knowledge	37
Repression	38
Exit, Loyalty, and Voice	39
Reliability and Validity	39
Antidotes to Limitations: The Wellsprings of Knowledge	
and the Emergence of Analytics	40
Summary	42

SECTION II Data

43

CHAPTER 4

Data Sources

45
48
48
49
49
49
55
55
57
58

CHAPTER 5

Qualitative or Unstructured Data

Introduction	59
Qualitative Research for the Ethnographer	61
Sampling Qualitative Data	62
Processing Unstructured Data	63
Processing Qualitative Data	64
The Deductive Approach: A Priori Categories	67
The Inductive Approach: Emergent Categories	68

Methods for Inductive Coding	68
Hybrid Methods: Inductive and Deductive	71
Data Display	71
Example of Gathering and Processing Qualitative Data:	
A Disneyland Ethnography	75
Summary of Qualitative Analysis from Ethnographic Work	80
Computerized Analytics for Unstructured Data	81
Summary	82

Quantitative Data

Introduction	83
Constructs, Concepts, and Operationalizing the Variable	84
Random Variables, Expected Values, and Frequency Distributions	85
Validity and Reliability	86
Numbers and Scales	86
Scales and Kinds of Statistical Analyses	90
Time series, Cross-section, and Pooled Data	92
Summary	93

SECTION III

Descriptive Analytics

Introduction	95
Ad Hoc Queries and Drilling: Begin to Learn What Is Happening	96
Metrics and Key Performance Indicators and Management	97
Dashboards and KPIs	98
Balanced Scorecards and KPIs	100
Summary	101

CHAPTER 7

Data Analysis Without Statistics

Introduction	103
Case Study of Data Analysis Without Statistics	104
Sorting Data	105

Cleaning and Rounding Data106Graphing the Frequency Distribution106Grouping Data106Data Visualization107Types of Graphs114Summary125

CHAPTER 8

Descriptive Statistics

Introduction	127
Mean	129
Median	130
Mode	131
Skewness	131
Percentile	131
Variance	133
Standard Deviation	134
Range	136
Rate of Change	136
Multivariate Descriptive Statistics	137
Bivariate and Multivariate Statistics	137
Cross-Tabulations	137
Cross-Tabulations and the Analysis of Frequency Using Frequency Calculations	139
Correlation	141
Multiple Correlations	148
Correlation Is Not Causation	149
Summary	150
Appendix: Case Study Showing the Calculations for a Correlation Coefficient	151

SECTION IV

Diagnostic Analytics

Introduction	153
Integration of the Balanced Scorecard and Strategy Map into Diagnostic Analytic	s 154
Kinds of Statistical Tests	155

Introduction	157
Population Parameters and Sample Estimates	158
Random Sampling, Representativeness, and Bias	158
Developing the Logic of Inference: Expected Values and Extreme Values	159
Expected Values, Extreme Values, Theoretical Distributions,	
and the Law of Large Numbers	161
The Real World: Changing the Number of Samples	164
Increasing the Sample Size	165
Expected Values and the Changing Probability of Extreme Values	
with Increasing Sample Size	166
The Sampling Distribution of the Means and the Central Limit Theorem	167
Hypothesis Testing: An Informal Introduction	169
Decision Rules	171
Interval Estimates and Extreme Values and Decision Rules	172
Reviewing the α -level, Type I Errors, and Introducing Type II Errors	175
Summary	177

Samples, Probability, and Inferential Reasoning

CHAPTER 10

The Z-test and the Logic of Statistical Tests

Introduction	179
Requirements for Using the Z-test Statistic	180
From Z-value to Z-score Using Empirical Data	180
Digression: The Central Limit Theorem, the Standard Normal	
Distribution, and Statistical Tests	181
Arriving at Probabilities for Continuous Data Using the Z-test	
and Probability Tables	182
From Data to Probability Estimates: The Method of Standardizing	185
Confidence Interval, α-levels, and Type I Errors	188
Connecting Data to the Test: The Calculated Value and the p-Level	189
The p-Value and Its Meaning	190
Steps in Hypothesis Testing Using the Z-test	192

Reflecting on the Confidence Level and Calculating the Confidence Interval	
Types of Hypothesis Tests Using the Normal Distribution	196
Z-tests for Proportions	198
Summary	199
Appendix: Z-Tests and Sampling Size	200

Introduction	203
The Variety of t-tests	204
Introduction	203
The Variety of t-tests	204
One-sample t-test: The Student t-test	205
Two-sample t-test: Equal Sample Size, Equal Variances	207
Two-sample t-test: Equal or Unequal-size Samples and/or Unequal Variances	209
Paired Sample t-test	212
Summary	214
Appendix: Example Using the t-table	215

CHAPTER 12

The F-test

Introduction	217
F-tests and the Analysis of Variance (ANOVA)	218
One-Way Analysis of Variance, Between Subjects or Groups	219
Post-Hoc Tests	225
One-Way Analysis of Variance, Repeated Measures	226
Two-Way and N-Way Analysis of Variance	227
Fixed and Random Independent Variables	230
Summary	230
Appendix 1: Intuition on the F-test Among Means	231
Appendix 2: How to Read an F-table	233

viii

The χ^2 test

Introduction	235
The χ2 Test of Goodness of Fit	236
The χ2 Test of Homogeneity	240
The χ2 Test for independence	243
Summary	246
Appendix 1: χ² Case 1	246
Appendix 2: χ² Case 2	247
Appendix 3: χ² Case 3	247

SECTION V

Predictive Analytics

Introduction	249
Qualitative Predictive Methods	250
Quantitative Predictive Methods: Time Series	251
Quantitative Predictive Methods: Causal Models	251
Quantitative Predictive Methods: Classification Models	251
Evaluating Predictive Models	252
Using the Root Mean Standard Error (RMSE) to Judge Forecasts	254
Topic: Estimation and Interpolation	255
Forecasting, Backcasting, and Extrapolation	257
Summary	258
Appendix: Methods for Evaluating Forecasts	258

CHAPTER 14

Regression Analysis

Introduction	259
Optimal Fit in the Regression Model	261
Does a Relationship Exist Between the Variables?	262
Specifying the Regression Equation: The Importance of the Error Term	262
Specifying the Regression Equation: The Slope Coefficient and Intercept Constant	264
Regression Diagnostics: The F-test	264
Mean Squared Error Calculations and the Calculation of the F-statistic	268
The t-tests for the Regression Coefficient and Intercept	269
The Estimation of the Regression Line Coefficient and Intercept	272
F-test for the Overall Significance of the Regression	273
R and R ²	274
Standard Error of the Regression	275
Assessing the Regression Coefficients	275
eta Coefficient for the Slope of the Estimated Regression Line	275
α Coefficient	278
Review: Are the Coefficients Statistically Significant?	279
Summary	280

CHAPTER 15

Regression Analysis: Advanced Topics

Introduction	281
Issues in Regression Analysis	282
Patterns in Residuals	282
Heteroscedasticity: Cross-sectional Patterns	283
Autocorrelation	289
Multiple Regression	296
Dummy Variable Regression and ANOVA	302
Nonlinear Regression	304
Summary	312
Appendix 1: Durbin–Watson Tables	313
Appendix 2: Logarithms	313

Forecasting

Introduction	315
Case Study: Apple	317
Naïve Methods: Last-Year Constant	319
Naïve Methods: Last-Year Rate of Change	320
Smoothing Method: Moving Averages	322
Smoothing Method: Moving Average with Weighting of Observations	325
Smoothing Method: Exponential Smoothing	327
Seasonality Method: Forecasting Seasonality in Time Series Data	330
Regression Methods: Dummy Variable Regression for Seasonal Data	336
Regression and Prediction Intervals	339
Projection Method: Percent of Sales	341
Summary	349
Appendix 1: Apple Inc. Annual Revenue in \$ Billions, 1977–2020	350
Appendix 2: Apple Inc. Quarterly Annual Revenue in \$ Billions, 2012–2020	351
Appendix 3: Time Series Decomposition Data	352

SECTION VI

Prescriptive Analytics

CHAPTER 17

Optimization, Probabilistic Models, and Simulations

_	
Introduction	357
The Method of Optimization	359
Basic Concepts of Optimization	360
Geometry and Optimization	362
Factors Relevant in Formulation Optimization Problems	363
Calculus as a Method of Optimization	364
Mathematical Programming	370
Other Methods of Mathematical Programming	375
Probabilistic Methods	376
Using the Binomial Distribution	376

355

The Poisson Distribution	
Simulation	-
Summary	
Appendix 1: An Introduction to Calculus and Derivatives	

Appendix 1: An Introduction to Calculus and Derivatives	390
Appendix 2: Simplex Algorithm, Algebraic Solution	393
Appendix 3: Combinatorics—Permutations and Combinations	321
Appendix 4: The Bernoulli Equation	401

378 385 390

439 459

467

CHAPTER 18

Prescription and Classification

Introduction	405
Data Science and Artificial Intelligence	406
Data Mining	407
Machine Learning	407
Deep Learning and Artificial Neural Networks	409
Example of Structuring Unstructured Data: Text Mining	413
Methods for Evaluating Text Analysis: Accuracy, Precision, Recall, F1 Score	415
Cluster Analysis: Unsupervised Learning	417
Departing from Machine Learning: Statistical Modeling for Classification	421
Summary	428
Conclusion	429
Appendix: Using Microsoft™ Excel for Analytics	431

Glossary

Index

Bibliography

Preface

Diligence is the mother of good luck.

Benjamin Franklin

What Counts aims to provide entrepreneurs with an introduction to business analytics through quantitative and qualitative methods. These analytics are used to monitor, guide, and exploit the full range of functional considerations in the firm.

What Counts is the second volume in the Tools for Business Value Creation series. The first book in the series, *Making the Case*, discusses the work of value proposition analysis and strategy. The third book, *Exploring Value*, describes research methods entrepreneurs can use to identify, capture, and sustain the delivery of value.

This text introduces the novice to elementary analytical methods. I empathize with readers who might find the concepts challenging, and I have done my best to introduce the material carefully and thoroughly. *What Counts* includes example mini-cases and worked-out problems to help make difficult material easier to understand. Readers can access additional resource material, which is available on the website for this book, by contacting the author at questions@penserpress.com.

Section I: Analytics and Cognition

This introductory section of the book provides an overview of the concept of analytics. Chapter 1, "An Overview of Analytics," explains:

- Definition of analytics
- Types of analytics

This section also asserts that analytics alone are not adequate to guide business strategy. Management needs to develop a technology infrastructure and cultivate organizational intelligence to benefit from analytics. Chapter 2, "Organizational Intelligence and Learning," and Chapter 3, "Challenges to Organizational Intelligence," explore:

- The cognitive view of management
- Business intelligence
- Organizational intelligence
- The dominant logic
- The challenges of using analytics
- Sources of cognitive bias
- Sources of organizational inertia

Section II: Data

Chapter 4, "Data Sources," Chapter 5, "Qualitative or Unstructured Data," and Chapter 6, "Quantitative Data," explain:

- The kinds of numbers and how they determine the kinds of statistical analyses that are possible
- How to process data to create information
- How grouping, sorting, and cross-tabulations improve understanding of data
- The difference between structured and unstructured data
- How to process each type of data
- Best practices for graphing
- How color can be used to best effect in graphing
- The basic kinds of graphs and the requirements of each

Section III: Descriptive Analytics

Descriptive analytics ask, "What has happened?" and "What is happening?" Chapter 7, "Data Analysis Without Statistics," and Chapter 8, "Descriptive Statistics," address:

- Summarizing data
- Variability of data
- Mean, mode, and median
- Standard deviation
- Correlation
- Cross-tabulation

Section IV: Diagnostic Analytics

Diagnostic analytics ask, "Why did this happen?" or "What is the cause of this?" To answer such questions requires understanding how probability is used for statistical inference. Chapter 9, "Samples, Probability, and Inferential Reasoning," Chapter 10, "The Z-test and the Logic of Statistical Tests," Chapter 11, "The t-test," Chapter 12, "The F-test," and Chapter 13, "The χ^2 test," study:

- Central Limit Theorem
- Hypothesis testing
- Kinds of statistical tests
- Choosing among statistical tests
- How to execute them
- How to interpret their results

Section V: Predictive Analytics

Predictive analytics ask, "Why will it happen?" Chapter 14, "Regression Analysis," Chapter 15, "Regression Analysis–Advanced Topics," and Chapter 16, "Forecasting," detail:

- Prediction
- Regression
- Dependent and independent variables
- Interpolation and extrapolation
- Naïve, time series, and statistical forecasting models
- Linear and data
- Methods for dealing with nonlinear data
- How to improve methods of forecasting

Section VI: Prescriptive Analytics Overview

Prescriptive analytics ask, "Why should it happen?" and methods that can answer this question are addressed in Chapter 17, "Optimization, Probabilistic Models, and Simulations," and Chapter 18, "Prescription and Classification" and address:

- What "prescriptive" means
- The mathematical methods for prescriptive analytics
- Optimization
- Probabilistic model
- Simulation
- Classification

xvi WHAT COUNTS

Conclusion

The text concludes with a review and contextualization of the variety of material presented. Guidance is provided on how to organize and manage the use of analytics.

Appendix: Using Microsoft Excel for Analytics

Analytics require the use of statistical methods and mathematical programming. This appendix shows how the tools in Microsoft Excel can handle many of the demands for business analytics.

Glossary

This section succinctly defines a selection of keywords from the text. Key words in the text are introduced in italics.

Bibliography

The bibliography provides a list of sources used in the text, as well as other useful references.

WHAT COUNTS? Business Analytics for Entrepreneurs

What Counts presents and explains quantitative and qualitative methods to identify, evaluate, and analyze relevant data to inform the pursuit of business value.

The book provides in-depth examples for the range of quantitative analytics, with illustrations and detailed step-by-step calculations.

The text describes qualitative methods used by ethnographers to process non-numeric data to make such data amenable to analytics.

Qualitative methods for structuring non-numeric data is extended to a discussion of artificial intelligence and machine learning methods needed to process the volume of non-numeric data generated on the internet. "Professor Wilson has spent years guiding his students on how to formulate new ideas and then demonstrate their efficacy. His texts offer a fascinating collection of these tested methods, accompanied by insightful selections from the literature."

- Tom Loper, EdD, associate provost and dean, School of Science and Management, Bay Path University

"An idea must traverse numerous crossroads to arrive as socialized value to the market. Dr. Wilson's texts provide an articulation of this sequential, slice-by-slice evolution into value."

- Charles Sperry, inventor (150 patents)

These quantitative and qualitative methods are contextualized within the limits of organizational intelligence, business intelligence, and cognitive biases that challenge the valid interpretation of analytics.

TOOLS FOR BUSINESS VALUE CREATION is a three-volume series. The other volumes are:

Making the Case: Value Proposition Analysis and Strategy walks readers through the due diligence essential for evaluating a value proposition. The book explains how to create a case study to evaluate the feasibility of a value proposition. Readers learn to investigate a business idea, using a step-by-step method for conducting "due diligence" to estimate market demand and financial viability.

Exploring Value: Research Methods for Entrepreneurs guides readers through the quantitative and qualitative methods vital to entrepreneurship. Qualitative methods include idea generation and selection, observation methods, interviews, focus groups, grounded theory, and knowledge creation. Quantitative methods encompass surveys, quasi-experiments, and experiments.

James M. Wilson III, PhD, is a professor of entrepreneurial thinking and innovative practices at Bay Path University, Longmeadow, Massachusetts

